

PAPER SOLUTION

Aryan Agarwal
Founder and CEO
CVPS INTEGRATED STAR COURSE

From Meerut

JEE
MAIN
2026

JAN	SHIFT
22	1 st

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Two disc having same moment of inertia about their axis. Thickness is t_1 and t_2 and they have same density. If $R_1/R_2 = 1/2$, then find t_1/t_2 .

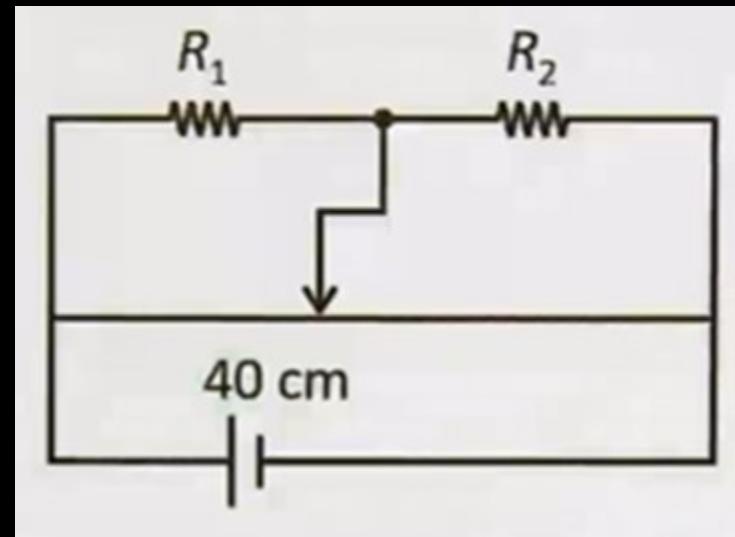
- A** $1/16$
- B** $1/4$
- C** 4
- D** 16

Ans. (C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In series R-L circuit, voltage of battery is 10 V. Resistance and inductance are 10Ω and 10 mH respectively. Find energy stored in the inductor when current reaches $\frac{1}{e}$ times of maximum value.

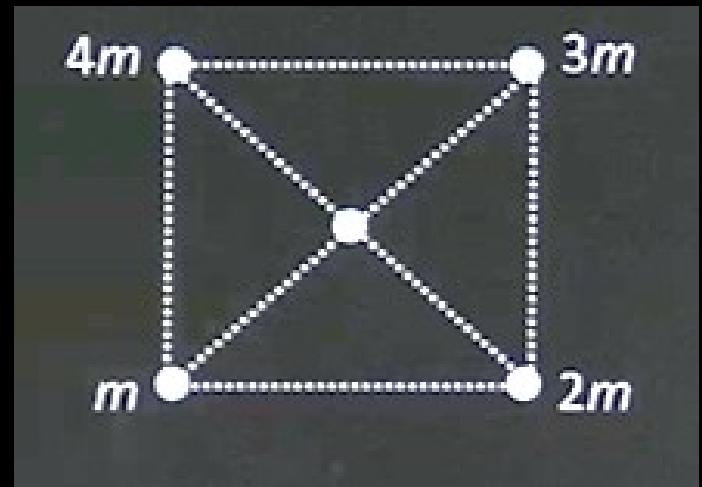
- A** 0.67 mJ
- B** 0.33 mJ
- C** 1.33 mJ
- D** 0.50 mJ


Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In a potentiometer null point for two resistance R_1 and R_2 is at 40 cm as shown. If 16 Ω is connected in parallel to R_2 then null point is at 50 cm then R_1 and R_2 are respectively.

- A** 16 Ω , 48 Ω
- B** 16/3 Ω , 8 Ω
- C** 32 Ω , 32/3 Ω
- D** 32/3 Ω , 32 Ω


Ans. (B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In the given situation force at center on 1 kg mass is F_1 . Now if 4m and 3m is interchanged the force is F_2 . Given : $\frac{F_1}{F_2} = \frac{2}{\sqrt{\alpha}}$. Find α .

- A** $\alpha = 5$
- B** $\alpha = 3$
- C** $\alpha = 7$
- D** $\alpha = 1$

Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A particle is projected at an angle of 60° with horizontal. When particle velocity vector makes an angle of 45° with horizontal its speed becomes 20m/s what is the initial speed?

- A** $20\sqrt{2}$ m/s
- B** $10\sqrt{2}$ m/s
- C** $30\sqrt{2}$ m/s
- D** $40\sqrt{2}$ m/s

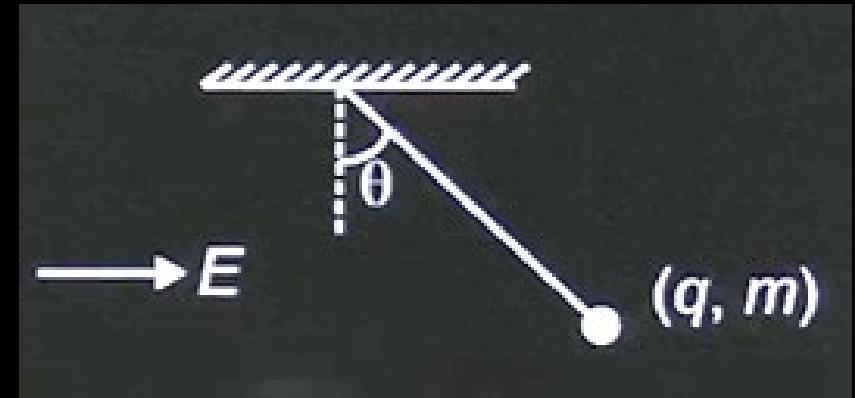
Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Match the column:

- A** A–R, B–P, C–S, D–S
- B** A–T, B–P, C–U, D–S
- C** A–R, B–T, C–Q, D–Q
- D** A–T, B–U, C–S, D–Q

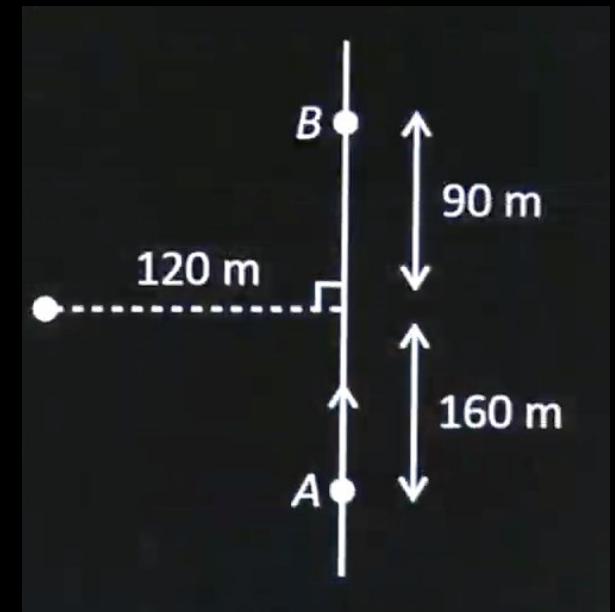
	Column-I		Column-II
(A)	Thermal Conductivity	(P)	$[ML^2T^{-2}K^{-1}]$
(B)	Boltzmann Constant	(Q)	$[M^1L^{-1}T^{-2}]$
(C)	Spring constant	(R)	$[M^1L^1T^{-3}K^{-1}]$
(D)	Surface tension	(S)	$[M^1L^0T^{-2}]$
		(T)	$[M^1L^2T^{-3}K^{-1}]$
		(U)	$[ML^2T^{-2}]$


Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A simple pendulum with bob (mass m & charge q) is in equilibrium in presence of horizontal electric field E then tension in thread is

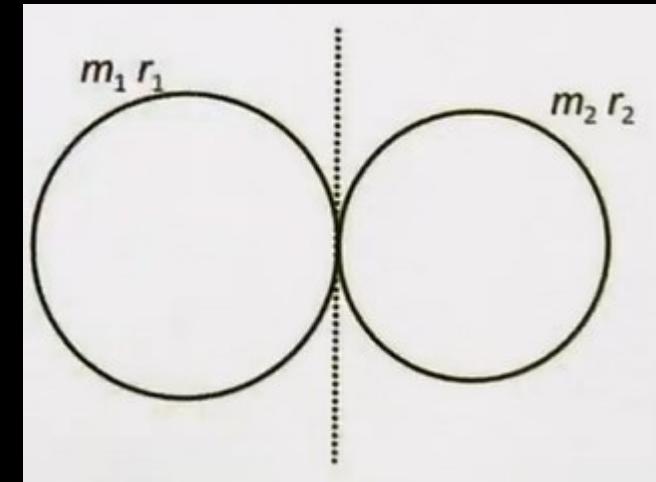
- A** $mg + qE$
- B** $\sqrt{m^2 g^2 + q^2 E^2}$
- C** $\sqrt{mg + qE}$
- D** $mg + qE \tan \theta$


Ans. (B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Detector D moves from A to B and observe the frequencies are differing by 10 Hz. Source is emitting frequency f_0 as shown: speed of detector is 35 times less than speed of sound. Then f_0 is

- A** 400 Hz
- B** 350 Hz
- C** 250 Hz
- D** 150 Hz


Ans. (C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Disk $m_1 = 5 \text{ kg}$ and radius $r_1 = 10 \text{ cm}$ and disk $m_2 = 10 \text{ kg}$ and radius $r_2 = 50 \text{ cm}$ are arranged as shown in figure. Find moment of inertia about an axis the common tangent and parallel to the plane of the disk.

- A** $57/64 \text{ kg m}^2$
- B** $51/16 \text{ kg m}^2$
- C** $31/8 \text{ kg m}^2$
- D** $41/8 \text{ kg m}^2$

Ans. (B)

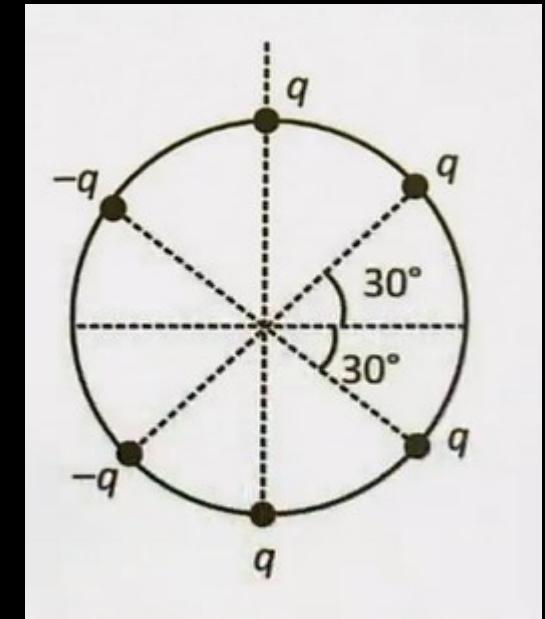
JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In adiabatic process the temperature reduces to $\frac{1}{4}$ th and volume increases to 8 times. Find adiabatic constant of the gas.

- A** $3/4$
- B** $5/3$
- C** $5/7$
- D** $8/5$

Ans. (B)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION


#Q. Six charges (four $+q$, two $-q$) are present at circle of radius r and centred at origin as shown. Electric field at origin is:

A $\frac{\sqrt{3}q}{4\pi\epsilon_0 r^2} \hat{i}$

B $\frac{\sqrt{3}q}{\pi\epsilon_0 r^2} \hat{i}$

C $\frac{\sqrt{3}q}{2\pi\epsilon_0 r^2} (-\hat{i})$

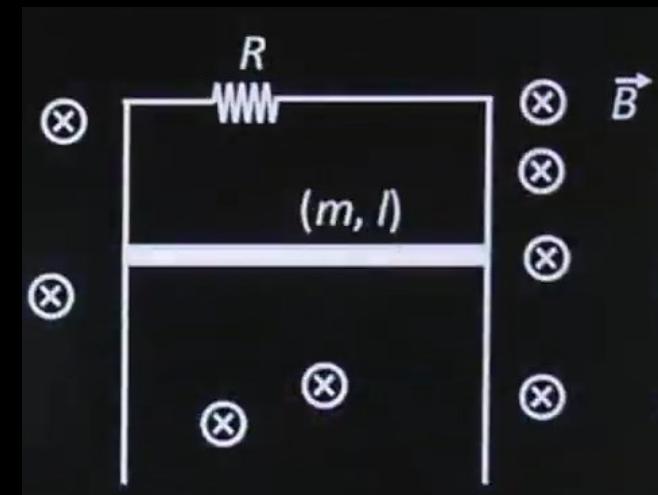
D $\frac{\sqrt{3}q}{4\pi\epsilon_0 r^2} (-\hat{i})$

Ans. (C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A planet 'A' having density ρ and radius R has escape velocity = 10 km/sec. Find the escape velocity (in m/s) of a planet B having density and radius both 10 times that of planet A.

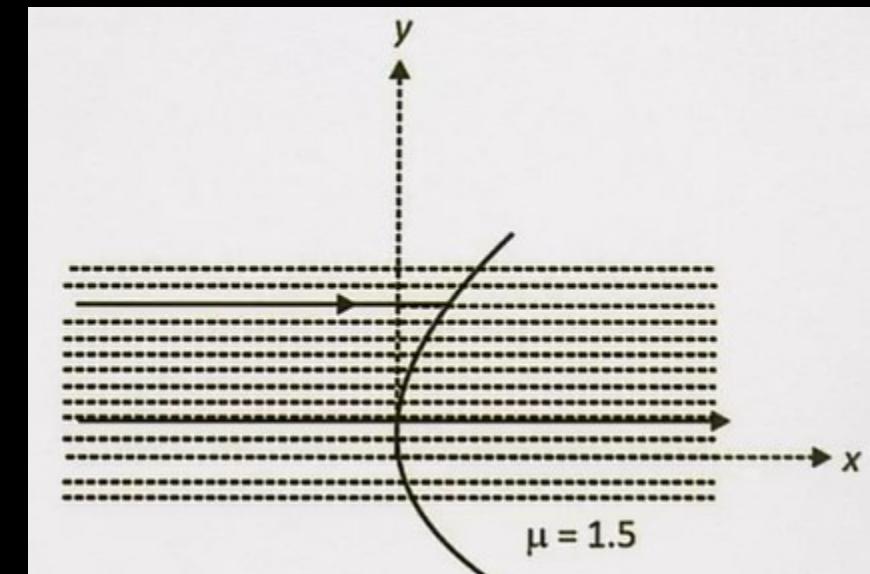
- A** $100\sqrt{10}$
- B** $100\sqrt{20}$
- C** $\sqrt{3000}$
- D** $\sqrt{900}$


Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A conducting rod of mass m and length l is moving on a infinite pair of conducting rails as shown. Conducting rails are connected to a resistance R at one end. Motion is in vertical plane and horizontal magnetic field in the region is B . Find terminal speed of rod.

- A** $V_0 = \frac{3mgR}{2B^2l^2}$
- B** $V_0 = \frac{mgR}{2B^2l^2}$
- C** $V_0 = \frac{mgR}{B^2l^2}$
- D** $V_0 = \frac{2mgR}{B^2l^2}$


Ans. (C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A ray parallel to x axis principal axis of incident curved surface. The x coordinate where ray cuts x-axis (in m) is : (The radius of curvature is 50 cm)

- A** 1.5
- B** 0.5
- C** 1
- D** 2

Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. A sinusoidal EMW is given by $\vec{E} = 20 \sin \frac{2}{300}x - 10^6t$ propagating in a non-magnetic material. Dielectric constant of material is:

- A** 9×10^4
- B** 3×10^4
- C** 2
- D** 4

Ans. (D)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Match the column-I with the correct numerical values of energy/heat in Column-II (R is universal gas constant)

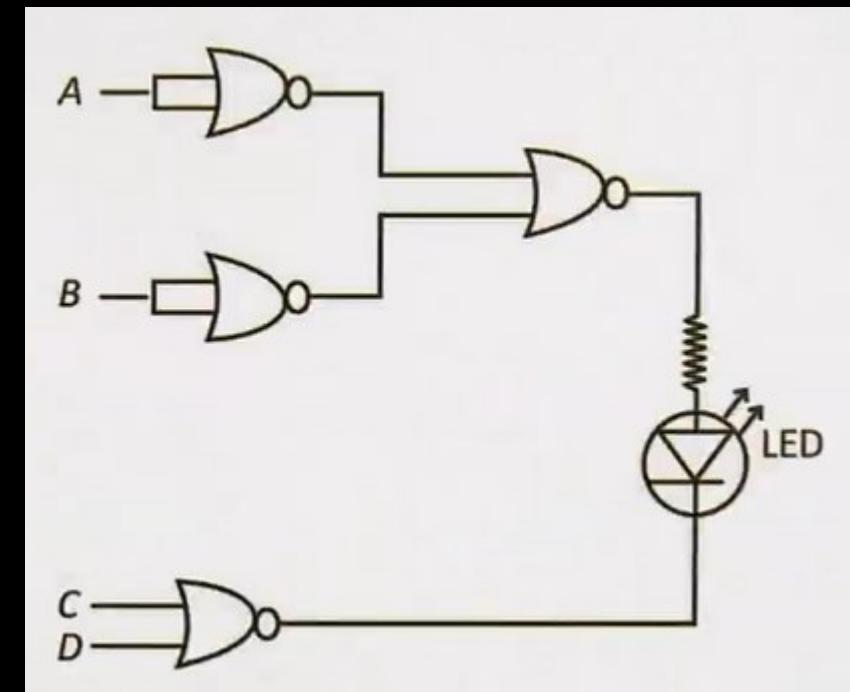
	Column-I		Column-II
(A)	1 mole of monoatomic ideal gas undergoes polytopic process $PV^{-1/2}$ with $\Delta T = 320$ K find ΔU	(P)	$650 R$
(B)	Find heat supplied to 2 moles of gas having heat capacity as $\frac{5}{2} R$ and $\Delta T = 130$ K	(Q)	$575 R$
(C)	Find the ΔU for 1 mole diatomic gas for $\Delta T = 230$ K	(R)	$480 R$

A $A \rightarrow R; B \rightarrow P; C \rightarrow Q$

B $A \rightarrow P; B \rightarrow R; C \rightarrow Q$

C $A \rightarrow R; B \rightarrow Q; C \rightarrow P$

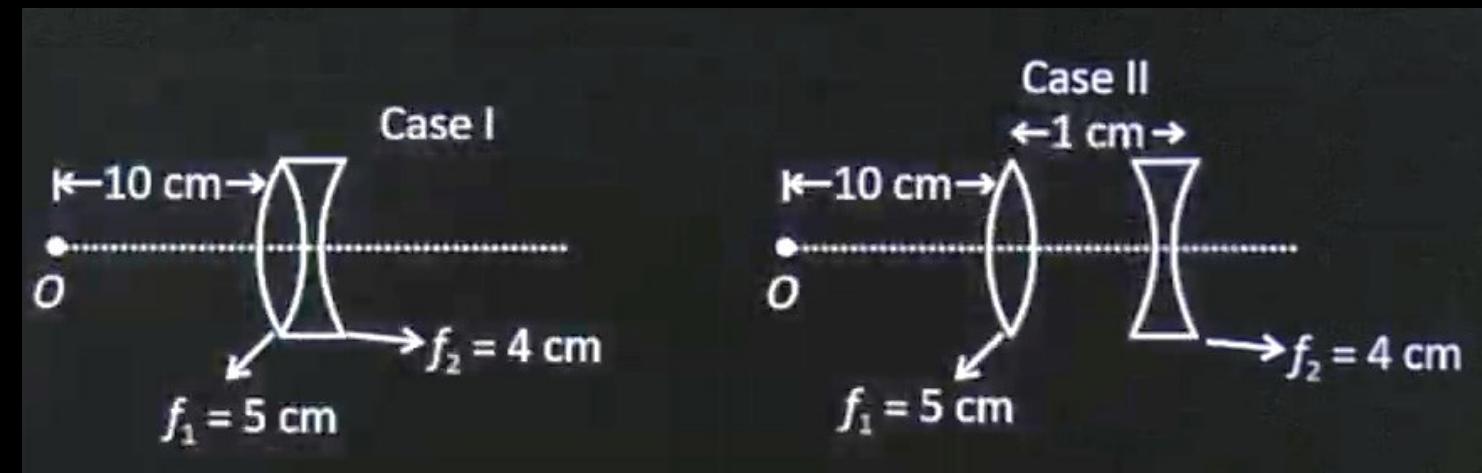
D $A \rightarrow Q; B \rightarrow P; C \rightarrow R$


Ans. (A)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. In the given logic circuit shown in the figure, inputs A, B, C, and D are applied as shown. An LED is connected at the output. In which of the following combinations will the LED glow.

- A** A = 1, B = 1, C = 0, D = 0
- B** A = 0, B = 1, C = 1, D = 0
- C** A = 1, B = 0, C = 0, D = 0
- D** A = 1, B = 1, C = 1, D = 1


Ans. (C)

JEE MAIN 2026 ▶ LIVE PAPER DISCUSSION

#Q. Combination of lenses are arranged in case I and case II as shown in figure. Magnification in two cases are m_1 and m_2 Find $\left|\frac{m_1}{m_2}\right|$.

- A** $5/6$
- B** $4/3$
- C** $3/4$
- D** $6/5$

Ans. (A)